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Abstract 

The spectrum of cold dark matter particles on Earth is expected to have 

peaks in velocity space associated with particles which are falling onto the 

Galaxy for the first time and with particles which have fallen in and out of 

the Galaxy only a small number of times in the past. We obtain estimates 

for the velocity magnitudes and the local densities of the particles in these 

peaks. To this end we use the secondary infall model of galactic halo formation 

which we have generalized to take account of the angular momentum of the 

dark matter particles. The new model is still spherically symmetric and it 

admits self-similar solutions. In the absence of angular momentum, the model 

produces flat rotation curves for a large range of values of a parameter e which 

is related to the spectrum of primordial density perturbations. We find that 

the presence of angular momentum produces an effective core radius, i.e. it 

makes the contribution of the halo to the rotation curve go to zero at zero 

radius. The model provides a detailed description of the large scale properties 

of galactic halos including their density profiles, their extent and total mass. 

We obtain predictions for the kinetic energies of the particles in the velocity 

peaks and estimates for their local densities as functions of the amount of 

angular momentum, the age of the universe and c. 
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I. INTRODUCTION 

Experiments are presently under way which attempt to identify the nature of dark matter 

[l] by direct detection on Earth. The dark matter candidates which are being searched for in 

this manner are WI1IPs and axions. WI>lPs is an acronym for “weakly interactive massive 

particles”. The best moti\rated candidate of this type is the lightest supersymmetric partner 

in supersymmetric extensions of the standard model of particle physics [Z]. The mass range 

for which LvI,tlPs provide the critical energy density for closing the universe is a few GeV 

to a few hundred GeV. The axion is a light pseudo-scalar particle whose existence has been 

postulated to explain why. in the context of the standard model of particle physics, the 

strong interactions conserve P and CP [3]. The likely mass range for which axions provide 

the critical energy density for closing the universe is low4 eV < m, < 10e7 eV [4]. 

Axions and WIbfPs are the leading cold dark matter (CDM) candidates. Other forms 

of dark matter are neutrinos and dark baryons. From the point of view of galaxy formation, 

the defining properties of CDM are: 

I. that CDM particles. unlike baryons. are guaranteed to interact with their surroundings 

only through gravity. and 

2. that CDM particles. unlike neutrinos, have negligibly small primordial velocity disper- 

sion. 

Studies of large scale structure formation support the view that the dominant fraction of 

dark matter is CDM. hloreover, if some fraction of the dark matter is CDM, it necessarily 

contributes to galactic halos by falling into the gravitational wells of galaxies and hence 

is susceptible to direct detection on Earth. WIMPS are being searched for by looking for 

WIMP + nucleus elastic scattering in a laboratory detector [5]. The nuclear recoil can be put 

into evidence by low temperature calorimetry, by ionization detection or by the detection of 

ballistic phonons. ,\xions are being searched for by stimulating their conversion to photons 

in a laboratory magnetic field [6,7]. The experimental apparatus involves an electromagnetic 

cavity placed in the bore of a superconducting solenoid. When the resonant frequency of 

the lowest TM mode of the cavity equals the axion mass (hv = m, c2), some galactic halo 

axions convert to microwave photons inside the cavity. If a signal is found in the cavity 

detector of dark matter axions, it will be possible to measure the energy spectrum of the 

axions with great precision and resolution. (The energy resolution is limited only by the 

measurement integration time and the stability of the local oscillator with which the axion 

signal is compared.) Hence the question arises: what can be learned about our galaxy and 

the universe by analyzing such a signal ? The main purpose of this paper is to address this 

question by predicting properties of the CDM spectrum on Earth in terms of cosmological 

input parameters. Incidentally, all CDM candidates have the same phase space distribution. 

and hence the same spectrum on Earth, in the limit where their small primordial velocity 

dispersions are neglected. We are motivated in part by the fact that knowledge of the 

spectrum may help in the discovery of a signal. 

In many past discussions of dark matter detection on Earth, it has been assumed that 

the dark matter particles have an isothermal distribution, or an adiabatic deformation of 

an isothermal distribution. A strong argument in favor of this assumption is the fact that 
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it predicts the rotation curve of the galaxy to be flat at large radial distances. Indeed. self- 

uravitating isothermal spheres always have density distributions p(r) which fall off at large 0 
r as l/r2. Uoreover. they have a ‘*core radius”, i.e. a radius Q within which the density p( r I 

no longer behaves as l/r2 but goes to a constant as r + 0. The behaviour may. for most 

practical purposes. be approximated by the function p(r) = p(O)[l + (r/a)*]-‘. Thus. the 

contribution of an isothermal halo to the galactic rotation velocity goes to zero as r -+ 0. 

This feature of isothermal halos is attractive as well because it is known that. in spiral 

galaxies like our own. the rotation velocity at small radii may be entirely accounted for b! 

the bulge and the disk. In our galaxy, the core radius is such that roughly half of the rotation 

velocity squared at the solar radius r 9 21 8.5 kpc is due to the disk and bulge while the other 

half is due to the dark halo. Thermalization of the galactic halo has been argued to be the 

outcome of a period of “violent relaxation” [S] f o 11 owing the collapse of the protogalaxy. If 

it is strictly true that the velocity distribution of the dark matter particles is isothermal. 

then the only information that can be gained from its observation is the corresponding virial 

velocity and our own velocity relative to its standard of rest. 

However, one may convince oneself that the velocity distribution of dark matter particles 

has a non-thermal component. Consider the fact that our closest neighbor on the galactic 

scale. the galaxy ,&I31 in Andromeda, at a distance of order 730 kpc from us, is falling towards 

our galaxy with a line-of-sight velocity of 120 km/set. This motion can be understood to be 

due to the mutual gravitational attraction between the two galaxies: first they were receding 

from each other as part of the general Hubble flow, this relative motion was halted and now 

they are falling towards one another. We may use ,M31 as an indicator of the motion of any 

matter in our neighborhood. Moreover, if cold dark matter exists, then there is cold dark 

matter at every physical point in space (including everywhere we see nothing and which 

appears empty), because by Liouville’s theorem the 3-dim. sheet in 6-dim. phase-space on 

which the CDM particles lie can not be ruptured. The thickness of that sheet is the tiny 

primordial velocity dispersion of the CDM particles, of order lo-l2 for WIMPS and lo-l7 for 

axions (c = 1). The implication of the above is that, if CDM exists, there are CDlM particles 

falling onto our galaxy continuously and from all directions. The motion of these particles 

gets randomized by gravitational scattering off giant molecular clouds, globular clusters and 

other inhomogeneities but complete thermalization of their velocity distribution occurs only 

after they have fallen in and out of the galaxy many times. As a result there are peaks in the 

velocity distribution of CDM particles at any physical point in the galaxy [9]. One peak is 

due to particles falling onto the Galaxy for the first time, one peak is due to particles falling 

out of the Galaxy for the first time, one peak is due to particles falling in for the second 

time, and so on. In particular, this is true on Earth. The width of the first two peaks. which 

we label n=l, is related to and is of order the velocity dispersion of the particles before they 

fall in for the first time. The width of the next two peaks (n=2) is expected to be somewhat 

larger as a result of scattering of the particles off inhomogeneities in the galaxy. The width 

of the next two peaks (n=3) is larger still because these particles have been scattered more. 

And so on. 

One of the main purposes of this paper is to obtain estimates of the sizes and velocity 

magnitudes of the velocity peaks on Earth. By “size”, we mean the contribution of the peak 

to the local mass density of the halo. By “velocity magnitude” , we mean the magnitude of 

the velocity vector of the particles in the peak as measured in the rest frame of the Galaxy. 
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i.e. in a frame which is not corotating with the disk. The tool we use is the secondar! 

infall model [lo] of galactic halo formation. This model assumes a single overdensity in an 

expanding universe. .A halo forms around the overdensity because dark matter keeps falling 

onto it. The dark matter is assumed to have gravitational interactions only and to have 

zero initial velocity dispersion. The model also assumes spherical symmetry. Finally. in 

its original form, it assumes that the dark matter particles have zero angular momentum 

with respect to the center and hence that their motion is purely radial. Much progress 

[ 11.12] in the analysis of the model was made as a result of the realization that the time- 

evolution is self-similar provided Q = 1 and provided the initial overdensity has a special 

scale-free form; see Eq.(3.11). The parameter E that appears in this ansatz is related to 

the slope of the power spectrum of primordial density perturbations at the galactic scale. 

Self-similarity means that the halo is time-independent after all distances are resealed by 

an overall time-dependent size R(t) and all masses by a time-dependent mass ,M( t). The 

self-similar solutions can be obtained numerically with great precision and some of their 

properties may be derived analytically. When the parameter 6 is in the range 0 5 E 5 Z/3. 

the density profile p(r) w l/r2 and thus the rotation curve is flat. 

However, for the purpose of estimating the sizes of velocity peaks, the secondary infall 

model without angular momentum is rather inadequate. In particular. it tends to overesti- 

mate the size of the peaks due to dark matter particies falling in and out of the galaxy for 

the first time. Indeed, angular momentum has the effect of keeping infalling dark matter 

away from the galactic center and this effect is largest for particles falling into the galaxy 

last. On the other hand, the presence of angular momentum destroys spherical symmetry 

and thus makes the actual evolution far more complicated and untractable. However. as 

will be explained in detail below, it is possible to include the e$ect of angular momentum 

into the secondary infall model without destroying its spherical symmetry by averaging over 

all possible orientations of an actual physical halo [ 131. Moreover. the time evolution of 

the model with angular momentum thus included is still self-similar provided the angular 

momentum distribution is of a particular scale-free form. It was also found [13] that angular 

momentum has the effect of making the halo contribution to the galactic rotation curve go 

to zero at the galactic center. thus introducing an effective core radius for the halo mass 

distribution. We define the effective core radius b to be the radius at which the halo con- 

tributes half of the galaxy’s rotation velocity squared. For our Galaxy, b is of order our own 

distance to the Galactic center. This by itself suggests that the effect of angular momentum 

on the velocity peaks on Earth is not small. The model with angular momentum can be 

accurately solved on a computer. Its predictions for the effective core radius b. the local 

halo density, and the expected sizes and velocity magnitudes of the first few velocity peaks 

are tabulated below for representative values of the input parameters, which are the age 

of the Universe, the parameter e and the average amount of angular momentum. We also 

give an analytical treatment of the model under simplifying but realistic assumptions. It 

yields general formulae which may be used to estimate the expected sizes and the velocity 

magnitudes of the velocity peaks for a wide range of the input parameter values. 

In Section II we review the arguments of ref [9] why velocity peaks in the cold dark matter 

spectrum on Earth are expected, and add some comments of our own. In Section III we give 

a detailed description of the self-similar infall model, without and with angular momentum. 

In Section IV we describe how some of the model parameters are determined in terms of 



observed properties of our Galaxy and Eve give the results of the numerical integration of the 

model. Section V contains our analytical treatment of the model. Section !‘I summarizes 

our results. 

II. PHASE SPACE STRUCTURE OF COLD DARK MATTER HALOS. 

In cold dark matter scenarios, the initial phase space distribution is a very thin sheet 

near ? = Hr’. where H is the Hubble rate and r’ is the position relative to an arbitraril>T 

chosen reference point. The deviations from perfect Hubble flow which are present are 

associated with the primordial densit? perturbations that will produce galaxies and large 

scale structures by gravitational instability. Where a galaxy (or some other object) forms 

and grows, the phase space sheet is folding itself up. The process is illustrated in Fig. 1 

for the simplified case where a single spherically symmetric overdensity is present in an 

otherwise homogeneous universe and where all dark matter particles move on radial orbits 

through the center of the overdensity. The line in the figure indicates the location of the 

dark matter particles in (r. +) phase space at an instant of time. r is the distance to center 

of the overdensity and 2: = dr/dt. As time goes on the line winds up” in the clockwise 

direction. rotating most rapidly at the center. 

Fig. 1 shows that the velocity spectrum of cold dark matter particles on Earth, or 

anywhere else in the galaxy, has a series of peaks. One peak is due to particles falling onto 

the galaxy for the first time, passing by Earth while going towards the galactic center. .\ 

second peak is due to particles which are falling out of the galaxy for the first time, passing 

by Earth while going away from the galactic center. A third peak is due to particles falling 

onto the galaxy for the second time. X fourth peak is due to particles falling out of the 

galaxv for the second time. And so on. .A rough estimate of the number .V of velocity peaks ” 
on Earth in this idealized case may be obtained as the ratio of the age of the galaxy (- 10” 

years) to the time (- 0.5 x lo8 years) it takes a particle to fall to the center of the galaxy 

starting from rest at the Earth’s location, with the result .V - 200. However, the presence 

of angular momentum of the dark matter particles tends to decrease N by restricting the 

range of radii over which dark matter orbits vary. (In the extreme limit of circular orbits. 

,V = 1.) As will be seen below, this expectation [9] is confirmed by our calculations. We 

shall also find that the number of peaks depends upon 6. 

Of course the description of a galactic halo presented in Fig. 1 is much simplified. In the 

remainder of this section. we discuss the sensitivity of the conclusion. that there are peaks 

in the cold dark matter velocity distribution on Earth, to the simplifying assumptions that 

were made. In particular, we inquire into the effect of 

1. the gravitational scattering of the dark matter particles by inhomogeneities in the 

galaxv . 

2. the angular momentum that the dark matter particles have with respect to the galactic 

center 

3. the velocity dispersion that the dark matter particles have before they fall onto the 

galaxy. 



A. Scattering by inhomogeneities in the galaxy. 

The effect of the gravitational scattering of the dark matter particles by the inhomo- 

ueneities in the galaxv. such as stars. globular clusters and large molecular clouds. is to 17 I 
“fuzz up” the phase space sheets. Consider a phase space sheet which in the absence of 
scattering produces on Earth a stream with unique velocity ?Z. The collective effect of scat- 

tering by a class of objects of mass -Ll and density n is to diffuse the velocities in the stream 

over a cone of opening angle 10 given by .[9] 

( At?)2 = J dt lbma’ ‘cb;2:’ nv 2nbdb 
m,n 

‘” 2 x lo-; (2.1) 

where the time integral is over the past history of the particles in the stream, b is the impact 

parameter of a scattering and u is the velocity of the sheet relative to the scattering center. 

In the galactic disk, the giant molecular clouds are most likely the main contributors. With 

.M - 10” ME,, n - :3 kpc-“. b,,,,, - kpc and b,,, - 20 pc, they yield A0 z 0.05 for dark 

matter particles that have spent most of their past in the galactic disk. The contributions 

due to globular clusters (,\I - 5x 105~14~~, n - 0.3 kpcm3) and stars (M - ‘U3, n - 0.1 pcD3) 

are less important. .\t any rate. peaks due to dark matter particles that have spent much 

of their past in the central parts of the Galaxy are likely to be washed out. On the other 

hand, the peaks due to dark matter particles which have fallen in and out of the Galaxy 

only a small number of times in the past are not erased by scattering. 

B. Angular momentum. 

The presence of the rotating galactic disk clearly indicates that the baryons in our galaxy 

carry angular momentum. This angular momentum is thought to have been produced by 

the gravitational forces of nearby galaxies when ours started to form. One should expect the 

dark matter in the galactic halo to have similar amounts of angular momentum and hence 

to move on non-radial orbits. If an infalling particle’s angular momentum is large enough. 

its distance of closest approach to the galactic center is larger than our own distance (Z 85 

kpc) to the galactic center and hence it can not possibly reach us. It is nonetheless true that 

particles falling onto the galaxy for the first time reach us at all times, even if the typical 

distance of closest approach of such particles to the galactic center is much larger than 8.5 

kpc. 

Indeed. consider all particles that reach their turnaround radius at a given time. 

“Turnaround” refers to the moment in a particle’s history when it reaches zero radial veloc- 

ity with respect to the galactic center for the first time, after its initial Hubble flow velocity 

has been halted by the gravitational pull of the galaxy and before it starts to fall onto the 

galaxy for the first time; see Fig. 1. Ml particles that reach their turnaround radius at a 

given time are on a surface which, from a topological viewpoint, is a sphere enclosing the 

galactic center. Let us call this surface the “turnaround sphere”. By consulting a catalog of 
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the galaxies in our neighborhood and plotting their radial velocities as a function of distance. 

one concludes that the radius of the present turnaround sphere is of order l-2 .LIpc for ollr 

galaxy. C’onsider the turnaround sphere at an arbitrary time t. .\t any point on that suriace ” 
the angular momentum L-ector has a unique value parallel to the surface. Sow. it is n-e11 

known that a continuous vector field on a Z-sphere can not everywhere differ from zero. It 

must have at least two zeros. 

Hence there are two places on any turnaround sphere where the angular momentum 

vanishes. The particles from these two locations will pass through the galactic center when 

they fall onto the galaxy next. producing two velocity peaks there. By continuity ( the 

phase space sheet can not tear). other particles on the turn-around sphere will produce two 

velocity peaks at any point sufficiently close to the center. Fig. 2 shows the time evolution of 

a turn-around sphere which is initially rigidly rotating about an axis and which subsequently 

is moving under the influence of the gravitational potent% of an isothermal sphere. The 

figure demonstrates that any turnaround sphere passes (at least) twice by any point inside 

of it, once on the way in and once on the way out, assuming only that the point is inside 

the sphere both at its first and its second turnaround. By definition, second turnaround is 

when the sphere reaches its maximum size for the second time in its history. just after its 

first oscillation. Thus we find that when angular momentum is included. there are still two 

(possibly more but necessarily an even number) velocity peaks on Earth due to particles 

falling through the galaxy for the first time, two peaks or more due to particles falling 

through the galaxy for the second time, and so on. As we saw in the preceding subsection. 

these peaks are not erased by scattering off stars, globular clusters or giant molecular clouds. 

The sizes and velocity magnitudes of these peaks constitute the main topic of this paper. 

Finally, let us note the effect angular momentum has on the caustics of a halo. .A 

*‘caustic” is a place where the dark matter density is large because the phase space sheet folds 

back there. The density actually diverges at the caustic in the limit where the thickness of 

the phase space sheet goes to zero. There is an outer caustic surface near the n-th turnaround 

radius with n = 2,3.-i... ; see Fig. 1. It can be shown that near a caustic surface. the dark 

matter density behaves as p - O(X)/& + constant, where z is the distance to the caustic 

surface and O(X) is the Heaviside function: O(X) = 1 for x > 0 and O(x) = 0 otherwise. 

Now, when angular momentum is absent, the center of the galaxy is a very special point 

because all dark matter particles go through the center at each orbital oscillation. The dark 

matter density goes as p - l/r* at the center if there is no angular momentum and the 

rotation curve is Aat. Thus, in the absence of angular momentum the galactic center is a 

caustic point. When angular momentum is present, that caustic point spreads into a set of 

inner caustic rings. Fig.2 shows the appearance of such an inner caustic ring for the case of 

axial symmetry. The fact that the caustic appears has nothing to do with axial symmetry 

however. Rather, it is a consequence of the fact that when a sphere is turned “inside out”, 

as illustrated in Fig.2, a ring singularity must appear on the surface at some point during 

the process. Generally, the caustic ring appears near the place where the particles with 

the most angular momentum on a given turn-around sphere turn back at their distance of 

closest approach to the galactic center. Outer caustics at the Earth’s location are likely 

to be very much degraded by scattering of the dark matter particles off inhomogeneities in 

the galaxy. However. inner caustics associated with particles which have gone through the 

central parts of the galaxy only a small number of times in the past are not much degraded. 



The dark matter density on Earth could be much enhanced if w-e happen to be close to an 

inner caustic. 

C. On the velocity dispersion of infalling cold dark matter. 

In this study, when obtaining estimates of the average sizes and of the velocity magnitudes 

of the velocity peaks, we neglect the velocity dispersion 6vi, the cold dark matter has when 

it falls onto the galaxy for the first time. Presumably, this is a valid approximation provided 

6vi, is much smaller than the velocity dispersion Svgal - 10B3 of the galaxy as a whole. We 

argue in this section that this condition is probably satisfied although we will not attempt 

to provide a reliable estimate for the size of 6vi,. The width 6v, of the velocity peaks due to 

particles falling in and out of the galaxy for the n-th time? where n is sufficiently small that 

the broadening effect of scattering of the particles by the galaxy’s inhomogeneities can be 

neglected, is related to 6vi, by Liouville‘s theorem: 6v, = 6vi,( t*,,)[p,/p(t*q,)]“3 where p,, 
is the contribution to the local halo density from particles in the n-th peak. and Svi,(t.,,) 

and p( tS,n) are the velocity dispersion and density those particles had at the time t,,, of 

their first turn-around. 

Let us emphasize that the values of the peak widths 6v, may some day be measured in a 

direct CDM detection experiment and that such data would provide information about our 

universe which is not readily accessible by other means. Also, if the widths of some peaks 

are small enough the sensitivity of the cavity detector of dark matter axions is improved 

by looking for narrow peaks. In the case of the present LLNL experiment [T], which does 

look for narrow peaks in addition to looking for a signal whose width is set by the galaxy’s 

overall velocity dispersion 6v3,i - 10e3. the sensitivity of the search is improved if there is 

a velocity peak with 6v, less than about 10e8 and with a fraction of the local density larger 

than about 1%. 

Turning to the question how large Svi, may be, let us start by describing the primor- 

dial velocity dispersion which is the contribution that is present even if the universe were 

completely homogeneous, i.e., it is the value of 6vi, if our galaxy were the only density 

perturbation in the universe. For WIMPS, the primordial velocity dispersiom SVW is due 

to the finite temperature To the WIMPS have when their kinetic energies decouple from 

the primordial heat bath. Thus 6vw - (2T&2)‘/*(R~/&), where m is the WIMP mass, 

and RD and & are the scale factors at temperature To and now. For m - 50 GeV and 

TD - 1 MeV, one has VW - lo-l2 which is very small. For axions, the primordial velocity 

dispersion is due to the inhomogeneity of the axion field at temperature Tl 2 1 GeV and 

time t 1 z 2 x 10e7 set when the axion mass becomes equal to the Hubble expansion rate. If 

there is no inflation after the Peccei-Quinn phase transition at which the upQ( 1) symmetry 

gets spontaneously broken, then the scale of inhomogeneity of the axion field is of order 

the horizon scale at time tl -and the primordial axion velocity dispersion today is therefore 

6% - (m,t$‘(&/l&-J - lo-l7 x (lo-’ eV/m,). If there is inflation after the Peccei-Quinn 

phase transition, then the axion field gets homogenized over enormous distances and 6v, is 

exponentially small. 

The primordial velocity dispersion, 6vw or 6v,, discussed in the preceding paragraph is 
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the thickness of the CDM phase space sheet. It constitutes a lower bound on the 1.elocit). 

dispersion &, of infalling CDbI. .\dditional velocity dispersion is expected because the 

phase space sheet may wrap itself up on smaller scales than that of the galaxy as a ivhoie. 

as illustrated in Fig.3. The phase space sheet wraps itself up wherever an overdensithv has 

grown by gravitational instability past the linear regime (&p/p < t) into the non-linear one 

(6p/p > 1). In theories of structure formation based upon cold dark matter. the spectrum of 

primordial density perturbations is flat. i.e., it has approximately equal power on all length 

scales. The matter density perturbations do not grow till the time t,, of equality between 

the matter and radiation energy densities. After t,, , all density perturbations which have 

wavelength less than the horizon (this includes all length scales of order a galaxy size) grow 

together at the same rate and therefore they all reach the non-linear regime at approximatel! 

the same time. In the standard CDM cosmology, the smaller scale clumps reach the non- 

linear regime somewhat earlier because the processed spectrum of density perturbations is 

not exactly flat on galaxy scales but is slightly tilted with more power on small scales. 

What happens in the non-linear regime is far from obvious. The rate of growth of an 

overdensity in the non-linear regime is of order fi, where p is its mean density. Indeed 

w/G is of order the free infall time. which is also the time necessary to produce a new 

fold in the phase space sheet. At the start of the non-linear regime, as we just argued. 

all overdensities have densities of the same order of magnitude and they therefore grow at 

comparable rates by locally wrapping up the phase space sheet. However. overdensities of 

large physical size will tidally disrupt and therfore inhibit the growth of overdensities of 

smaller physical size in their neighborhood. In the immediate vicinity of our galaxy, there 

are no visible overdensities other than nearby dwarf galaxies such as the Magellanic clouds. 

Dark matter and accompanying baryons are nonetheless falling onto the galaxy now for the 

first time. It is the velocity dispersion of this unseen matter that we are interested in. If this 

matter is in large clumps. one might expect it to light up stars and thus become visible. On 

the other hand, it could be in clumps which have not lit up for some reason. However, any 

known object smaller than a galaxy (e.g. stars, globular clusters, large molecular clouds. 

dwarf galaxies) has velocity dispersion smaller than Svgal 2 10e3, and dark matter objects 

should be expected to be less clumped than baryonic objects because they can not dissipate 

their energy. On this basis. it seems safe to assume that Svi, is considerably less than 6z?,,i. 

There is a particular kind of clumpiness which is expected to affect axion dark matter if 

there is no inflation after the Peccei-Quinn phase transition. This is due to the fact that cold 

dark matter axions are inhomogeneous with 6p/p m 1 over the horizon scale at temperature 

Tl 2 1 GeV when they are produced at the start of the QCD phase-transition, combined 

with the fact that their velocities are so small that they do not erase these inhomogeneities 

by free-streaming before the time t,, when matter perturbations can start to grow. These 

particular inhomogeneities in the axion dark matter are immediately in the non-linear regime 

after time t,, and thus form clumps. called “axion mini-clusters” [14-161. These have [IS] 

mass JZmc ‘v 10-‘3M~, and size I,, ‘v 101’ cm, and therefore their associated velocity 

dispersion u,, = d= z 10-l’ at time t,,. This velocity dispersion increases by 

about a factor 10 from t,, till the onset of galaxy formation because of the hierarchical 

clustering of the axion mini-clusters. This yields u,, ‘v lo-’ as the contribution of mini- 

clusters to the velocity dispersion 6vi, of infalling axions if there is no inflation after the 

Peccei-Quinn transition. 
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III. SELF-SIMILAR INFALL MODELS. 

A. The radial infall model. 

The tool we use to obtain estimates of the sizes and the velocity magnitudes of the 

highest energy peaks is the secondary infall model of galactic halo formation. In its original 

form. this model is based on the following assumptions: 

1. the dark matter is non-dissipative 

‘3. it has negligible initial velocity dispersion 

13. the gravitational potential of the galaxy is spherically symmetric and is dominated by 

the dark matter contribution 

4. the dark matter particles move on radial orbits through the galactic center. 

Assumption 1 means that the only force acting upon the dark matter particles is the grav- 

itational pull of the galaxy. Assumption 2 states that before the galaxy starts to form. at 

some initial time ti, all the dark matter particles at the same position Fi relative to the 

galactic center move with the same velocity 17~. Provided t, is chosen early enough, this 

initial velocity is given by the Hubble expansion: 

Ci = H(ti)r', s (3.1) 

H(t,) is the Hubble rate at time t,. The issue of the validity of assumption 2 is discussed at 

length in the previous section. Henceforth, we will take its validity for granted. Assumption 

3 is realistic because the gravitational potential of a galaxy as a whole (luminous plus dark 

matter) is nearly spherically symmetric even if the distribution of its luminous matter is not 

spherically symmetric at all. Assumption 4 is the most doubtful. As was discussed in the 

previous section, the rotating disks of spiral galaxies show that their baryons carry angular 

momentum and one should expect the dark matter to have similar amounts of angular 

momentum and hence to move on non-radial orbits with distances of closest approach to the 

galactic center at least of order the radius (- 10 kpc) of the disk. Assumption 4 is motivated 

mainly by simplicity. Below, in the next subsection, we will generalize the model to rid it 

of this assumption. For clarity, we refer to the model with the fourth assumption included 

as the radial infall model. 

Let us call Mi the mass inside r, at the initial time tiu In a perfectly homogeneous and 

flat universe, i;M; is equal to 

Jf?=’ 
4n rfH(t* I2 2rf 

1 = 7 p(t# = 2G =m- 

if we take t, to be in the matter dominated epoch. Instead, 

(3 2) * . 

Mi(ri) = & + SlM;(ri) . 
1 

(3.3) 
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where 6.11,( rr ) is a sphericall!- symmetric overdensity. u * The dark matter shell ivhich is init iall>- 

at radius rt has initially the radial velocity 

y&-J = H(t,)r, = %$3t, . (34 1 

assuming that t, is small enough so that the every earliest deviations from perfect Hubble 

flow may be neglected. The position r( f,. t) of each shell at time t is determined by soivins 

the equations 

d*r G Mr. t ) 
s=- r2 ’ 

M(r. t) = 1” dridr d”t @( r - r(r,, t)) , 
0 0 t 

i :33i 

(13.6 j 

with the initial conditions given in Eq. (3.4). O(s) is the H eaviside function. defined earlier. 

The qualitative evolution of the dark matter distribution in phase-space (r. +) may be 

described as follows. Initially. the dark matter particles are located on the line 2: = H(t,)r. 

As time goes on. this line .‘winds up” in a clockwise fashion rotating most rapidly near 

r=+ = 0. Fig.1 shows the line on which the dark matter particles are located at a 

particular moment in time. 

The radius r( T,, t) of a given shell initially increases till it reaches a maximum value r,(r, ) 

at a time t=(rt). r,( r,) and t=(ri) are called the turnaround radius and turnaround time of 

shell rt. After t.(r,). the radius of shell rt will oscillate with decreasing amplitude. As long 

as it does not cross any other shells. the mass interior to shell ri is constant, with value -LI,. 

and its motion is the well-known motion of a particle attracted by a central mass -1gi in the 

limit of zero angular momentum. Shell r, does not cross any other shells till some time after 

t*( r,), when it is failing onto the galactic center for the first time. Thus. one readily finds: 

t*(ri) = ” r.( r;)3 
2 2G1Wi(rt) ’ 

and 

T*(G) = r, 
il!ft (Ti ) 

SlWi(ri) ’ 

(Xa) 

(Wb) 

After a given shell crosses other shells its motion depends on that of the other shells and 

becomes more difficult to determine. 

-Much progress in the analysis of the model came about as a result of the realization 

[11.12] that Eqs.(U) and (3.6) h ave self-similar solutions for appropriate initial conditions. 

A solution is self-similar if it remains identical to itself after all distances have been resealed 

by a time-dependent length R(t) and all masses by a time-dependent mass M(t). R(t) is 

taken to be the radius at which dark matter particles are turning around at time t: see 

Fig. 1. M(t) is taken to be the mass interior to R(t) at time t. So, R(t) = r&-J and 

*W(t) = lV;(r,) with ri such that t.(r;) = t. A self-similar solution has the properties: 
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.W(r. t) = M(t)M(r/R(t)). ( 3.S) 

and 

r(rl. t) = r.( r,)~(~lf.(r~ 1) . (:3.9) 

lvhere ,M and X are functions of a single variable. Let us verify that indeed the evolution 

is self-similar for appropriate initial conditions. Substituting Eqs (13.5) and (3.9) into Eq. 

(3.5) and using Eq. (3.7a). one finds: _ 

d2A 7r2 -W(t) -- 
dr* --YXZIiqYyy 

(3.10) 

where T T z z t/t.(r,). VV e want the RHS of Eq. (3.10) to depend only upon T T and A(T). A(T). This 

happens for the initial condition: 

Sfkli( ri) MO t 
A&(r;) = 12/rt(r,) ’ ( ) (3.11) 

where MO and f are parameters. E should be in the range 0 5 E 5 1, since E = 0 corresponds 

to the extreme case of a r;-independent overdensity whereas E = 1 corresponds to the extreme 

case of an excess point mass located at r = 0. The initial density profile (3.11) does not have 

any feature that would distinguish an epoch in the evolution of the galactic halo from other 

epochs. It is this “scale free” property that makes the initial density profile (3.11) consistent 

with self-similarity, as we are about to show. From now on, for the sake of convenience and 

following Fillmore and Goldreich. we will use Ml instead of rt to label the shells. Csing Eqs. 

(3.3) and (3.11), and neglecting terms of order S:M,/LWi versus terms of order one, we find 

that Eqs. (3.i’) become 

Hence 

Therefore 

t,(r;) = 
3n iw. 3c/* 

44 k l 

( 1 
0 

8 1 
l/3 l/3 

r.(M,) = 7tZ(,M,)GIM, . 

2/3c 2/3c 

, , and 

M(t) Wt) 2/3c 2/3c 

- - = = M(t*(fwJ) = = 44; 44; 

= = g/3c g/3c 
7 7 

(3.12a) 

(3.12b) 

(3.13a) 

(3.13b) 

(3.14a) 



r,( -II, ) -= 
R(t) 

Thus. Eq. (3.10) has the desired form: 

d’X r* +/3~ 

-= ---M 
dr* 8 x2 

(3.1 lb I 

(:3.l>j 

Similarly, using Eq. (3.8) and Eqs. (3.14); we rewrite Eq. (3.6) as 

wo = -M((R(t), t) = 
J 
00 dMi 

Jw - 0 0 -M(t) <R(t) - r&b&)X 

(3.16) 

which also has the desired form. T varies from 1 to oo. The boundary conditions at T T = = 1 1 

are: 

X(1) = 1. $1) = 0 . (3.17) 

Fillmore and Goldreich [ 1 I] integrated Eqs. (3.15) and (3.16) numerically for various values 

of C. They also derived analytically the behaviour of M(c) when < - 0 using adiabatic 

invariants to obtain the motion of the shells. Bertschinger [12] analyzed the case E = 1. 

Let us mention in passing that the ratio of the density at the turnaround radius to the 

critical density is p./pC = %*/[16(3~ + l)]. 

B. Secondary infall with angular momentum. 

As was emphasized earlier, the assumption that the infalling dark matter is devoid of 

angular momentum with respect to the galactic center is inadequate for the calculation of 

the velocity peaks which are the main topic of this paper. However, it is possible to include 

the effect of angular momentum into the secondary infall model while keeping the model 

tractable. We will do this in two steps First we will assign the same value of angular 

momentum magnitude to all particles in a given shell. Second, we will assign the particles 

in a given shell a distribution of angular momentum magnitudes. The model which results 

from the first step is not so realistic but it is easier to explain. 

1. Single magnitude of angular momentum for all particles on a shell. 

Let’s assume first that the particles belonging to shell Mi all have the same magnitude 
of angular momentum I( L\Ii) and that they all have, at some initial time, the same radial co- 

ordinate r( fZ/i;, t) and the same radial velocity v,( L’Ui, t) = &( M;, t)/at. CVe further assume 
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that at any point F( Mt. t ) = +r(.lI,, t) on shell .\I,. all particles in the shell have their trans- 

verse velocities &( M;, F, t) = 1( .SI&/T( MI, t ) isotropically distributed about +. i. e. each 

direction j perpendicular to i- is equally much represented. .js a result of these assumptions. 

each shell remains spherical as it moves through the spherically symmetric mass distribution 

.\I( r. t) due to all other shells. Initially. at time t,. the shell -II, has radial velocity 

C’, ( JI, 7 t ) = H(t,)r(M,.t,) = 
2r( Jl,. tJ 

3t, - 
(3.18) 

Eqs. (3.2) and (3.3) hold as before. Provided 1( M;) is not too large. the turnaround radius 

r,(J&) and time t-(-Vi) are still given by Eqs. (3.7) to a very good approximation. We will 

use these equations, neglecting the corrections therein due to I( ,LI,) # 0 and find that self- 

similarity is possible. Note. however, that if the corrections to Eqs. (3.7) due to I( Az/r,) # 0 are 

included one still finds self-similarity to be possible. The reason we neglect the corrections is 

not t,o obtain self-similarity but because these corrections are truly small for realistic values 

of angular momentum. 

To obtain self-similarity we assume as a necesary, but no longer sufficient. condition that 

the initial mass distribution is given by the scale free power law of Eq. (3.11). Eqs. (3.12). 

(3.13), (3.11) are then still valid as well. Each dark matter particle satisfies: 

d2r 1’ GJl(ry t) -- 
dtz = r3 r2 * 

(3.19) 

Substituting therein 

r(*bli. r(*bli. t) t) (3.20a) 

M(r, t) = M(t)M (3.20b) 

one obtains. using Eqs. (3.12) - (3.14): 

d2X 1( 1M;)2t*( lLli)2 9 43c 

G= G= 
-m- -m- 

T*(hli)4A3 8 X2 
.u .u (3.21) 

where r = t/t*(MJ as before. To obtain self-similar solutions, we must make the additional 

assumption that 

l(Mi) = j 
r=( iz/-1i)2 

t&W) ' 

where j is a constant. Then 

CFX j2 n2 T2/3c 
---_ --• 
dr2 - x3 8 x2 

14 

(3.22) 

(3.23) 



Eq. (3.16) for ,U([) and the boundary conditions (l3.17) remain unchanged. 

The question arises how realistic the model is in the above form. Consider shell -11, near 

its turnaround time tl(.Llt). Th e actual angular momenta of the particles in the shell are of 

course not distributed as in the model. The model assumes Gi to be isotropicall>- distributed 

about r’. Instead. angular momentum has a unique value I( ,Lf,, rJ at each point. with I( -II,. 71 

changing from point to point on the shell. As was discussed in Section II. r’i-lr,. r’) must have 

at least two zeros on the shell. This implies that there are necessarily some particles in the 

shell which will pass through the center of the galaxy and. by continuity. other particles will 

reach the Earth as well. There are two velocity peaks in the spectrum of cold dark matter 

particles on Earth due to particles falling into and out of the galaxy for the first time. two 

peaks due particles falling into and out of the galaxy for the second time. etc. In contrast. 

in the above model, after a certain galactic age none of the particles falling onto the galaxy 

for the first time reach the Earth because these particles have too much angular momentum. 

Their distance of closest approach to the galactic center exceeds our own distance to the 

galactic center. If we turn for a moment to the results of the computer simulations, we see 

that for the example of Figs.6 and 7. in which j = 0.2. only particles which are falling in 

and out of the galaxy for the n-th time with n > 3 can presently reach us. 

2. Distribution of magnitude of angular momenta on a shell. 

In reality, particles at different locations on a given shell have different values of vector 

angular momentum. As a result, the time evolution of a shell is not spherically symmetric 

when angular momentum is present. This is illustrated by Fig.2 in a special axially sym- 

metric case. However. we can restore spherical symmetry by averaging over all possible 

orientations of a physical halo. This corresponds to adopting the model of the previous 

subsection but with a distribution of magnitudes of angular momentum for the particles in 

each shell. Let each shell i21; have a fraction nk( M;) of particles with magnitude of angular 

momentum Ik(M,) where k = 1.. . . , K. To obtain self-similar solutions. nk(ilil;) must be 

independent of -Mi and 

ok = jk 
r*( Mi)2 
t.(izl;) ’ 

The equations for self-similar solutions are then 

t rk(AVliy t) = r*(-Wi)Xk - ( 1 t*(Aui) ’ 

d2Xk 

dT2 

m dr@ 
++2/3r e-- 

(3.24) 

(:3.25a) 

(3.2513) 

(3.25~) 
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h- 

c 
nk = 1 . 

k=l 

(:3.:!.jd I 

In our calculations. we shall take jk to be distributed according to the density 

dn - = ‘-‘j 
4 

2 exp( -j’/j,‘) . (3.26 1 

Let us explain this choice, starting with the behaviour of dn/dj near j = 0. The angular 

momentum field on a sphere must have at least two zeros. Let us choose the origin (0 = 0) 
of polar coordinates to be at one of them. Assuming that the zero is simple. the Taylor 

expansion of the magnitude of angular momentum function j(S. 9) in powers of 0 starts 

with the term linear in 8: j - 8. Then we have: dn/dj - dn/de - 8 - j. The cutoff at 

large j in Eq. (3.26) was chosen to be Gaussian for the sake of 

distribution likely has a sharp cutoff, with a maximum value of 

that is very similar to a Gaussian. We express our results below in 

the distribution. j = &jo/2. 

convenience. The actual 

angular momentum. but 

terms of the average over 

A benefit of including angular momentum into the secondary infall model is to produce 

galactic halos with an effective core radius. The radial infall model. i.e. the model without 

angular momentum. produces flat rotation curves for 0 < E < 2/3. Adding angular momen- 

tum has the effect of depleting the inner halo and hence of making the halo contribution to 

the rotation curve go to zero as r + 0. This is desirable because. in spiral galaxies like our 

own. it is the sum of the contributions from the halo, the disk and the bulge that produces 

flat rotation curves, and the central parts of the galaxy are known to be dominated by the 

bulge and the disk. We define the “effective halo core radius” b as the radius at which half 

of the rotation velocity squared is due to the halo. In our galaxy b is estimated to be of 

order 10 kpc. We will find below that this implies j - 0.2 in the model. 

The secondary infail model with a distribution of angular momentum described in this 

subsection still has shortcomings due to the fact that the model averages over all possible 

orientations of a physical halo. In particular, the model is only able to produce estimates of 

the average sizes of velocity peaks. The averages are over all locations at the same distance 

from the galactic center as we are. At some of these locations, a particular velocity peak 

may be much larger than average because that location happens to be close to an inner 

caustic. 

C. Inclusion of baryons 

One may also wish to include the effect of the gravitational potential of the galactic 

bulge and disk. As was already noted, the disk and bulge of our galaxy are conspiring 

with its dark matter halo to produce an everywhere approximately flat rotation curve. We 

may reasonably assume that this was also true in the past because most spiral galaxies are 

observed to have approximately flat rotation curves and they do not all have the same age. 

This suggests a simple way to include the effect of baryons in the self-similar secondary 

infall model, to wit: first obtain for given e the mass function &f(t) of the model without 
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angular momentum and then use that mass function and Eq.(:J.Sb‘l to obtain the phase 

space distribution of the dark matter in the model with angular momentum. \L’e will find 

below that including the gravitational field of the disk and bulge in this manner does not 

have much effect upon the sizes of the highest energy peaks but it does shift their kinetic 

energies upward by deepening the potential well at our location. 

D. 6 and the spectrum of initial density perturbations. 

The spectrum of the cosmological density perturbations which give rise to galaxies con- 

tains information about the likely value of the parameter C. It has been shown [17] that. if 

the density perturbations have a Gaussian distribution, the average density profile around 

a peak in the density distribution is given simply by 

i(r) < h(r) >= I----- 
i(o) 

(3.271 

where S(?‘) G Sp(?‘)/p and i(r) Z< 6(7)6(O) > is the 2-point correlation function. The latter 

is related to the power spectrum P(k) by 

C(r) = / exp( ii.qP( k)d3k. (3.28) 

The power spectrum is the product P(k) = Ak”T2( k) where Ak” is the primordial spectrum, 

taken for simplicity to be a power law, and T(k) is the transfer function. For cold dark 

matter. the transfer function is given by [M] 

T(k) = 
ln( 1 + 2.34~) 

2.34q 
x [l + 3.S9q + ( 16.1q)2 + ( .5.46q)3 + (6.71q)4] -I” . (:3.29) 

where q = kMpc/h*. The Harrison-Zel’dovich spectrum corresponds to n = 1. Eqs.!:3.2’i) 

and (3.28) imply that if P(k) - k* on some momentum scale k. then C(r) w rSQe3 and hence 

E = (CL + 3)/3 on the corresponding length scale ?- = l/k. We computed cy = d lnP/d lnk for 

n = 1 and plotted the resulting e(r) in Fig. 4 for the relevant scales. The figure suggests 

that E is of order 0.2 - 0.3 on the galactic scale. 

IV. NUMERICAL INTEGRATION 

In this section, we present the results from numerically integrating Eqs. (3.25b.3.25c) 

for various values of the parameter c and various angular momentum distributions. includ- 

ing no angular momentum. a single value of angular momentum and the distribution of 

Eq.(3.26). Th e f unction X(T) gives us the phase-space distribution of the particles through 

the equations: 

r(fb&, t) = r.(MJX t 
( 1 ts( AMt) 

= R(qA( T)T-2’3-2’gr , (&la) 
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u( *II,. t) = 
dr( SI, . t ) = R(t) T1,3-2,9cdX 

dt 
-. 

t dr 
(4.lb, 

If there is a distribution of angular momentum values. the functions A( T). r( -11,. t) and 

I*( .\I,, t) carry an index /C which we have suppressed here to avoid cluttering the equations. 

To solve Eq.( 3.25b) for the particle trajectory A( 7) we need to know the mass function 

,U([). This function. in turn, is given in terms of the trajectory X(r) by Eq.(:3.?5c) or. 

equivalently. by: 

M(I) = c (r,-,‘i:c(E) - ~2;2’3’(E)) ’ 
7l= 1 

t 4.2) 

where the TJ{) correspond to the moments of time when the trajectory crosses radius 

r = [R(t), i.e. they are the solutions of X(T) = JT~/~+~/“. Following Fillmore and Goldreich 

[ll], we solve Eqs.(325b) and (3.25~) simultaneously by a technique of successive iterations. 

Starting with some arbitrary mass profile &I(<) (we took ;z/I(J) = [‘) we find X(T), which 

is then used to derive a new mass profile. from which a new trajectory is derived. and so 

on. The procedure is repeated till it converges. We find that the mass profile changes very 

little after 5 iterations. Typically we run 10 iterations to get the final results. 

Fig. 5 shows the phase-space diagram for the case cz = 0.2 and zero angular momentum. 

The solid line in that figure shows the location of all the particles in phase space at a 

given time, i.e. it is the set of points (r(lVi, t), u(:M;, t)) for all ;M;. The radial distances 

are normalized to the turnaround radius R at time t and the velocities are normalized to 

Jm= ~R(t)/&t which is the rotation velocity at the turnaround radius. Fig. 6 

shows the phase space diagram for the case c = 0.2 and a single value of angular momentum 

j = 0.2. The particle trajectory X(T) for that case is shown in Fig. 7. 

A convenient way to show the mass distribution is by showing the rotation curve. It’e 

define V(C, {) by: 

$Jr) = GM(r, q/r G y2 c, & T. 
i ) 

(4.3) 

With this definition, we have V(E, t = 1) = 1. The functions V(E, 0” obtained by numerical 

integration are plotted in Fig. 8 for various values of e and j = 0. 

To fit the model to our galactic halo, we must choose values of the present turnaround 

radius R e R(t) and of 42 c M(t). Equivalently, we may choose values of the present age t 

and of R. M is given in terms of R and t by Eq. (3.13b). t is given in terms of the Hubble 

rate & = h 100 km s-l Mpc-’ by the relation t-’ = 3&/2. We will use h to state the 

age of the universe. Then we fix R in terms of h by requiring that the model reproduce the 

measured value, urot = 220 km s-l, of the rotation velocity in our galaxy. Let us call V(C) 

the value of v(c,~) in the flat part of the rotation curve, near r = 0.02R for c < 0.4: see Fig. 

8. v(e) is related to vrot by Eq. (4.3). This implies: 

R h = 1.32+-’ Mpc. (4 4 . 

Table I gives V( c)~, Rh and Mh for various values of c. 
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Our distance to the galactic center is taken to be 8.5 kpc and Lve define ES z S..5 kpc; R. 

The contribution of the rz-th velocity peak to the local halo density is given by: 

M 
6T2/3-4/9C 

7-l 
pn = 

4nR3(,2 /%T,X, - (6~ + ‘-‘)X,1 ’ 
(4.3 I 

where X E dX/d T, and A,,, and r, are the solutions of X(T) = ~S~213+2’gc. The kinetic energy 

(in a frame of reference which is not rotating along with the galactic disk) per unit particle 

mass in the n-th peak is given by: 

R2 En = i u; = - f;~3-4/gc 
2t2 

. (4.6) 

We shall express E, in units of (300 km ~-‘)~/2 when presenting our results. 

We now discuss in greater detail the results specific to the different types of angular 

momentum distributions used. 

A. Radial infall 

Without angular momentum all particles pass through the origin, r = 0, at each oscilla- 

tion. To avoid infinities in the numerical integration, a regulator at small r is required. The 

one which is most convenient for us and which we use is to give a small amount of angular 

momentum to the dark matter particles. We found j2 = 10e6 to be small enough for our 

purposes. 

Fig. 5 shows a typical phase space distribution. Fig. (3 shows the rotation curves 

for various values of E. An analytical treatment of the radial infall model using adiabatic 

invariants predicted [l l] the behaviour of the density near the origin to be: p x r-g’/(3’+1) 

in the range 2/3 5 E 5 1 and p oc rm2 in the range 0 < E 5 2/3. These predictions agree 

very well with our results. The rotation curves do indeed go to a constant near the origin 

when 0 < c < 2/3 except for small logarithmic corrections. The analytical treatment given 

in section V suggests the behaviour p - 1/(r2Jm) for small 6 

Fig. 9 shows the velocity peaks on Earth predicted by the radial infall model with E = 0.2 

and h = 0.7. The rows labeled 3 = 0.0 in Table II give the density fractions and kinetic 

energies of the five most energetic incoming peaks for the cases e = 0.2 and 1.0, and h = 0.7. 

For each incoming peak there is an outgoing peak with approximately the same energy and 

density fraction. We find that. in the radial infall model. the sizes of the two peaks due to 

particles falling in and out of the galaxy for the first time are large. each containing of order 

10% of the local halo density for c in the standard CDM model inspired range of 0.15 - 0.4. 

As was emphasized already, this spectrum is unrealistic because angular momentum has a 

non-negligible effect upon the peak sizes. 
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B. Single non-zero value of angular momentum. 

Fig. 6 shows the phase space diagram for the case 6 = 0.2 and j = 0.2. In the model 

with a single non-zero value of angular momentum. the halo distribution has a set of inner 

caustics in addition to the usual outer caustics. However. the inner caustics are spheres in 

t he model whereas they are rings for a physical halo. The density profile for the model is 

shown in Fig. 10. There is a break in the logarithmic slope near the first inner caustic. near 

r = 0.01 R in the figure. For 6 < 2/3 we find p x re2 outside the first inner caustic (the same 

as with j = 0) but p ;X rvy inside with m/ A 96/(3c + 1). Th is observation is related to the 

fact that we find the function X(7) to be oscillating with constant amplitude and constant 

period for large r when j # 0; see Fig. 7. This can happen only if T*/~‘,U (A/T'/~+~'~') (A/T'/~+~'~') in 

Eq. (:3.25b) is independent of T at large T. For &f(r) x P. this implies o = 3/(3t + 1) or 
-i = 3 - o = 9e/( 3e + 1). We find that the exponent Q does not depend upon j, but the 

radius rc at which the break in power law behaviour occurs does depend upon j: the smaller 

j, the smaller rc. 

These observations may be understood as follows. When angular momentum is present. 

the contribution of a single phase-space sheet to the density profile p(r) is non-singular near 

r = 0. In that case. as a result of self-similarity the mass profile M(r), at r small enough 

that the influence of the first one or two phase-space sheets may be neglected, has the same 

functional dependence upon r as the dependence of LM upon R after eliminating t from the 

expressions for M( t ) and R( t ) in Eqs. (3.13). This yields 121 CC r3/f3’+? The fact that p(r) 

behaves as a negative power of r near r = 0 is in agreement with the results of X-body 

simulations [19]. The c-dependence of this power law was already known to White and 

Zaritsky [20]. 

The spectrum of velocity peaks that the model with a single value of angular momentum 

predicts is unrealistic. In particular, there are in this model no peaks on Earth associated 

with particles falling in or out of the galaxy for the n-th time with n small, because such 

particles have too much angular momentum to reach the Earth radius. In the case of Fig. 

6. there are only peaks for n > 3. But as we argued at length in section II. there are in 

reality peaks on Earth due to particles falling in and out of the galaxy for the n-th time 

with n = 12.3, . . . Angular momentum reduces the sizes of the peaks with small n but does 

not suppress them completely. 

C. Distribution of angular momenta. 

This model describes a physical halo averaged over all possible orientations. The particles 

are assumed to have the distribution of angular momenta given in Eq.(3.26). For the purpose 

of numerical integration, the angular momentum was discretized with a spectrum of four 

hundred values. The phase space diagram is like the one of Fig. 6 except that there are four 

hundred such diagrams superimposed on one another, one for each value of j. 

As was mentioned earlier, angular momentum has the effect of making the contribution 

of the halo to the rotational velocity go to zero at the galactic center as shown by Fig. 11. 

We define the “effective core radius” b to be such that y2(e, b/R) = v’(e)/2. We find that 
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near r = 0, the density p(r) x r-? ivith -: = !Jf/( 3t + 1) as in the case of a singie Lvalue 

of angular momentum. This behaviour is expected for the same reason as we gave for that 

case. The only change is that the transition between the region at large r where p(r) x reL 

and the region at small r where p(r) x r-? is smoother now because the critical radius r. 

ivhere the transition occurs depends upon j and there is now a distribution of j values. 

The velocity peaks for j = 0.2, E = 0.2 and h = 0.7 are shown in Fig. : _ The velocity 

peaks for the same choice of parameters except j = 0.4 are shown in Fig. 113 to indicate the 

sensitivity of the peaks upon 3. The spectrum of velocity peaks is also sensitive to the value 

of E. It is shown for the cases 6 = 0.13 and 6 = 1 on Figs. 14 and 1.5 respectivelv. I 

Table II gives the values of the current turn-around radius R. the effective core radius h. 

the halo density at our location p( rs). and the density fractions and kinetic energies of the 

five most energetic incoming peaks for various values of e, j and h. 

D. Self-similar infall with baryons 

As was discussed earlier. the dark matter phase space distribution for the input param- 

eters E, h and j is obtained in this case by solving Eq. (3.25~) using the mass distribution 

.U( {) for the same values of 6 and h but j = 0. The resulting velocity peaks are shown in 

Fig. 16 for e = 0.2, h = 0.7 and different values of j. Since the particles for different values 

of j but the same values of e and h are all moving in the same gravitational potential. the 

kinetic energies per unit particle mass E, of the peaks depend only very weakly upon 3. 

So. we have combined the spectra for different j values in one figure. Xote that the E, are 

larger in this case than in the case of Figs. 12 and 13 because the gravitational well near 

the center of the galaxy is deeper. Fig. 17 shows the results for e = 0.4. h = 0.7. 

V. AN ANALYTICAL TREATMENT. 

In this section. we derive analytical expressions for the sizes and locations of the velocity 

peaks. The treatment involves the following approximations: 

1. the mass distribution. including the contributions from both baryons and dark matter, 

is taken to be &f(t) = c for 0 < < 5 1 

2. the dimensionless angular momentum j values are assumed to be small 

3. our distance rs to the galactic center is assumed to be small compared to the oscillation 

amplitudes of the particles in the peaks under consideration. 

The method of adiabatic invariants will be used to obtain the motion of the dark matter 

particles. 

We first treat the case of a single angular momentum value, i .e the model described in 

subsection III.B.l. Since M(t) = <, the equation of motion in resealed variables of a particle 

with angular momentum j is: 
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d”,\ .2 
J ;T2 

2(+) -=---T3 
dr2 A3 13X 

(5.li 

Let X,Lf and X, be respectively the amplitude of oscillation and the distance of closest 

approach at time T. T. In the spirit of the method of adiabatic invariants. X,cf and A, are 

assumed to be slowly varying functions of T. T. This is a valid assumption for all oscillations 

except the first one. The first oscillation is only marginally adiabatic. For given A.M. the 

velocity at time T T and posit ion x is: 

The adiabatic invariant is: 

/ 

AM 
I(T. I(T. ii,) ii,) = = dAldX/dr/ 

Awl 

(5.2) 

= ~~,,,.~~dx~-~T~(t-“i,inz -j2 ($ - 1). (53) 

In the limit of small j, k may be neglected and we obtain X,~(~)2~~(~-‘) = constant. 

Since A,( 1) = 1, we have: 

h(7) 
= T-+(5?;-1) . (5.4) 

The period of oscillation is: 

J 

A M 
T(T, A,) = 2 dAidA/d+ri-’ 

ArTI 
-l/2 

= 2/$ 
7r2 

---T3 3c 

-I 
‘tL-‘)X~wlnx _ j’ 

Using Eq. (.5.4). we have in the limit of small j: 

T@) = y i’ dx = L&($-l), 
XT3 3c 1-1) 0 &-KG fi 

Let us introduce the “phase” &) : 

dr 
dv=7T--- 

T(T) - 

king Eq. (5.6) and setting q( 1) = 0, we have: 

+ T3 3~ 
p(r) = 96 4 

qr+l) _ 1 

4+3c * 

(5.3) 

(5.6) 

(5.7) 

( 8) 5. 

The times T,, at which the particle passes by the solar radius T, are given by: 
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&) = pn - I) + Oh-JR) 1.3.9) 

There are two peaks for given n. one ingoing and the other outgoing. The differences between 

the properties of the two peaks are of order o(r,/R) and are neglected. 

The contribution of each of the two n-th velocity peaks to the local density is given by: 

Jl 
6T:(1-$l 

Pn = 
w 1ScTngf-Tn) "_ (6~ + p)A(TnlI ' 

(.j. IO) 

where 

t.j.11) 

and $(fn) g is iven by Eqs. i.j.2) and (5.4). We neglect the second term in the denominator 

of Eq. (5.10) since it is o(r,/R) relative to the first term. Combining everything, we have 

the following estimate for the peak sizes due to dark matter particles with a single value of 

angular momentum j: 

pn pn = = 6Tgr+ 6Tgr+ [$zi3'ln [$zi3'ln ( ( Tsj+k) Tsj+k) - - j2$-~~~']~1'2 j2$-~~~']~1'2 , , 

where 

r, = 
[ 
;IYn-l)(&+$+l]&. 

7r 

(5.12) 

(5.13) 

Yote that Pn is the local energy density contributed by each of the two n-th peaks. When the 

expression under the square root in Eq. (5.12) is negative. one must set the corresponding 

Pn = 0 since this corresponds to the situation where the particles have too much angular 

momentum, and hence too large a distance of closest approach to the galactic center. to reach 

the solar radius. The kinetic energy per unit particle mass of the dark matter particles in 

the n-th peaks is: 

(5.14) 

R and t are determined in terms of h by t = 2/3H0 and Eq. (4.4) as before. 

For the case 6 = 0.2. j = 0.2, h = 0.7, the quantity under the square root in Eq. (5.12) 

is negatve and hence pn = 0 for n=1,2 and 3. This is consistent with the phase space 

distribution shown in Fig. 6 which was obtained by numerical integration. We found Eqs. 

(5.12 - 5.14) to be consistent with the results from numerical integration at the 130% level 
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or so. The agreement is ivorse for the case of zero angular momentum. probably because 

the logarithmic singularity of the potential at the origin in that case makes the motion non- 

adiabatic there. .\lso. when comparing results for the E, values. one should allow for an 

overall shift between the two calculations due to a change in the depth of the gravitational 

potential at the solar radius. Indeed. the analytical calculation has the mass distribution 

,U(t) = t which imp1 ies a perfectly flat rotation cur!‘e. whereas the rotation curves for the 

numerical calculations are as shown in Fig.S. 

The formalism readily accomodates a distribution dn/dj of angular momenta. Eq. (.?. 14) 
for the peak kinetic energies still applies. The expected peak sizes. in the sense of an average 

over all locations at distance r, from the galactic center. are given by the convolution of 

dn/dj with the expression, Eq. (5.12), for the peak sizes when there is a single value of 

angular momentum. Thus: 

pn = 6T-lrzc /,:’ dj$ [ GT:/3cln ( r,Ty+k) - j2~T++] -1’2 , ( 5.15 ) 

where T, is given by Eq. (5.13) as before and j, is the maximum value of j for which the 

argument of the square root is positive: 

7r &+f rs 
E In 

R 
jn jn = 77” 

d( ) 
f+& * 

rsTn 

For the angular momentum distribution of Eq. (3.26). one has 

1 2 --- 

pn = 6TErse 5j F ((j,ij0)z) y 

(5.16) 

(5.17) 

where 

F(u) s u J ’ dxesuz( 1 - z)-li2. (5.18) 
0 0 

A graph of F(u) is shown in Fig. 18. Table 3 shows the peak sizes predicted by Eq.(5.17) for 

the first eight peaks in the case e = 0.2. ? = 0.2 and h = 0.7. The peak sizes agree with the 

results of the numerical integration, given in the fifth line of Table 3, to within 1.5%. The 

peak energies also agree within 15% after one has subtracted an overall shift caused by the 

fact that the gravitational potential at our location is considerably deeper in the analytical 

calculation than in the numerical one. 

VI. CONCLUSIONS 

Motivated by the prospect that the spectrum of dark matter particles on Earth may 

some day be measured in a direct detection experiment, we have endeavoured to obtain 
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predictions for the properties of that spectrum. Previously. it had generally been assumed 

that the spectrum is isothermal. In contrast. we find that there will be large deviations from 

an isothermal spectrum in the form of peaks in velocity space associated with particles that 

are falling in and out of the Galaxy for the first time and with particles that have fallen in 

and out of the Galaxy only a small number of times in the past. 

To obtain estimates for the velocity magnitudes of the particles in the peaks and for 

the contributions of the individual peaks to the dark matter local density. we have used the 

secondary infall model of galactic halo formation. We have generalized the extant version 

of that model to include the effect of angular momentum. We forced spherical symmet r> 

onto the model with angular momentum by averaging over all possible orientations of a 

physical halo. As a result. the model can only make predictions for the average properties 

of the velocity peaks, the average being over all locations at the same distance from the 

galactic center as we are. We found that the model with angular momentum has self-similar 

solutions if the angular momentum distribution, as well as the initial overdensity profile. has 

a particular scale-free form. The self-similar solutions were analyzed in detail numerically 

and analytically. 

The model produces a good overall fit to what is known about galaxies like our own. It 

produces Aat rotation curves when the parameter c is in the range 0 to 2/3. The expected 

value of that parameter in models of large scale structure formation with cold dark matter 

and a flat (Harrison- Zel’dovich) spectrum of primordial density perturbations is c - 0.25. 

The model implies a relationship (cfr. Eq. (4.4) and Table I) between the current turn- 

around radius R, the present age of the universe, the galactic rotation velocity and the 

paramemter E. This relationship is consistent with observations and c - 0.25. 

In the model the galactic rotation curve is approximately flat all the way out to the 

turn-around radius R. R is of order l-2 Mpc for our galaxy. So far. the rotation curves of 

individual galaxies have been measured. and have been found to be flat. up to distances of 

order 100 kpc, implying masses of order 1012A112 or larger. The discovery of flat rotation 

curves [21] caused a well-known revolution in our concept of galaxies. Prior to these mea- 

surements galaxies were thought to have size of order 10 kpc and mass of order lO”‘.l& . 

The model implies that galaxies like our own are of order 20 times bigger even than the 

minimum size implied by the rotation curve measurements. The size is 1.8 Mpc and the 

mass is 1.7 x 10’3,-Mr, for the case e = 0.25. h = 0.7. See Table I for other cases. With 

galaxies that massive, one has 52 21 1 in galaxies. 

We found that the effect of angular momentum is to deplete the inner parts of the halo 

with the result that the halo contribution to the rotation curve goes to zero at r = 0. 

The model establishes a direct relation between the amount of angular momentum and the 

effective core radius b, defined as the radius at which the halo contributes half of the rotation 

velocity squared. Table II gives the turn-around radius R. the effective core radius b and 

the local halo density p as a function of the input parameters: E. the average amount of 

dimensionless angular momentum 3 and the Hubble parameter h. The observed value (220 

km/s) of our galaxy’s rotation velocity and our distance to the galactic center (8.s kpc) were 

used as fixed input parameters. 

Table II also gives the average values of the peak sizes as fractions of the local halo 

density p and the kinetic energies per unit particle mass of the particles for the first five 

incoming peaks as a function of the variable input parameters e.j and h. For each incoming 
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peak there is an outgoing peak with approximately the same kinetic energy and average local 

density. Let us emphasize again that the peak sizes given are averages over all locations at 

the same distance (8.5 kpc) from the galactic center as we are. It is not possible to make 

more precise predictions for the peak sizes on Earth without assuming a particular angular 

momentum field for the infalling dark matter. 
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TABLES 

T-ABLE I. Y’(E). Rh (in units of 1Ipc) and ,Uh (in units of -11: ) for different values of 6. 

c 

0.1 

v2k) Rh 

0.25 2.6 

.\I h 

1.1 x 1o14 

0.15 0.6 1.7 3.2 x 1o13 

0.2 0.9 1.4 1.8 x 1o13 

0.2.5 1.15 1.23 1 2 

91.5 

x 1p 

0.3 1.35 1.14 x 1o12 

0.35 1.5 1.08 3.1 x 1012 

0.4 1.7 1.02 6.8 x 10” 

0.45 1.8 0.98 6.1 x 10” 

TABLE II. Density fractions fn and kinetic energies per unit particle mass E, of the first five 

incoming peaks for various values of 6. h and the average dimensionless angular momentum j. ,Uso 

shown are the current turn-around radius R in units of Mpc, the effective core radius b in kpc. 

and the local density p in units of 10m2’ g cm -3. The fn. are in percent and the E, are in units of 

0.5 x (300 km s-l )2. 

6 3 h R b p fl (Ed f2 (E2) f3 W3) f4 (~54) f.5 ( Es 1 
0.2 0.0 0.7 2.0 0.0 8.1 13 (4.0) 5.3 (3.2) 3.3 (2.7) 2.4 (2.4) 1.9 (2.2) 

1.0 0.0 0.7 0.9 0.0 8.4 1.6 (3.4) 1.1 (3.2) 0.9 (3.0) 0.8 (2.9) 0.7 (2.8) 

0.15 0.2 0.7 2.4 13 5.0 4.0 (3.1) 5.4 (2.3) 5.3 (1.8) 4.9 (1.5) 4.0 (1.3) 

0.2 0.1 0.7 2.0 4.5 7.6 7.4 (3.8) 7.2 (3.0) 4.9 (2.5) 3.2 (2.2) 2.4 (2.0) 

. . 0.2 0.7 2.0 12 5.4 3.1 (3.4) 4.1 (2.6) 4.3 (2.1) 4.1 (1.8) 3.6 (1.6) 

. . -7 0.3 2.8 17 4.9 1.9 (3.5) 2.5 (2.7) 2.8 (2.3) 2.9 (2.0) 3.0 (1.7) 

-7 l , 0.9 1.6 9.3 6.0 4.4 (3.2) 5.3 (2.5) 5.1 (2.0) 4.5 (1.7) 3.6 (1.S) 

3. 0.4 0.7 2.0 40 2.6 0.8 (2.5) 1.6 (1.8) 2.1 (1.4) 2.4 (1.1) 2.6 ( 0.9) 

0.25 0.2 0.7 1.8 8.5 5.5 2.0 (3.5) 2.9 (2.8) 3.3 (2.4) 3.4 (2.1) 3.1 (1.8) 

0.4 0.2 0.7 1.5 2.2 7.7 1.1 (4.0) 1.5 (3.4) 1.8 (3.0) 1.9 (2.8) 2.1 (2.5) 
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T.iBLE III. Values of jn, E, and p n given by Eqs.l.j.14. 3.17) for the case c = 0.2. j = 0.2. 

h = 0.7 

71 In pn ( 10e2” g crnB3) E,( i(300 km s-’ 1’) 

1 0.05 l.i 4.9 

2 0.11 2.5 3.8 

3 O.li 2.i 3.3 

I 0.22 2.5 2.9 

5 0.26 2.2 2.6 

6 0.30 1.9 2.4 

i 0.34 1.6 2.2 

8 0.38 1.4 2.0 
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FIGURES 

irst outer caustic 

FIG. 1. Phase space distribution of the halo dark matter particles at a fixed moment of time. 
The solid lines represent occupied phase-s 
position. Each intersection of the solid an x 

ace cells. The dotted line corresponds to the observer 
dotted lines produces a velocity peak. 
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FIG. 2. Positions in physical space at successive moments in time tr < t2 < . * . < t6 of the 
particles on a turnaround sphere that is intially rotating rigidly about the vertical axis. The * 
indicates the appearance of an inner caustic ring. 
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log(r) 
FIG. 3. A small scale sub-clump falling into the galaxy for the first time. 
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FIG. 4. The expected value of the c parameier as a function of galaxy size, in models of 
formation based upon cold dark matter and a flat (Harrison-Zel’dovich) sp 
density perturbations. We defined ho.7 G h/0.7 
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FIG. 5. The phase space distribution of halo dark matter particles at a fixed moment of time 
for the case c = 0.2 and j = 0. The solid lines represent occupied phase space cells. The dotted 
line corresponds to the Sun’s position if h = 0.7. 
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FIG. 6. The phase space distribution o fl the dark matter particles in the case 
and a single value of angular momentum j = 0.2 

6 = 0.2,h = 0.7 
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FIG. 7. The function X(T) for c = 0.2, j = 0.2. 
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FIG. 8. Rotational velocity squared curves for different values of 6 and j = 0 
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E,=(v,/300 km s-‘)~ 

FIG. 9. The density fractions fn = p,/p (in percent) and the kinetic energies per unit particle 
mass E, of the peaks at the Sun’s position, for c = 0.2. j = 0 and h = 0.7. The peaks form pairs. 
One member of each pair is due to particles with positive radial velocity and the other is due to 
particles with negative radial velocity 
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FIG. 10. Density profile for the case c = 
j = 0.2. 

0.2. h = 0.7 and a single value of angular momentum 
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FIG. 11. Rotational curves for the case < = 0.2, with and without angular momentum. 
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FIG. 12. The same as Fig. 9 but c = 0.2, h = 0.7 and 7 = 0.2. 
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FIG. 13. The same as Fig. 9 but E = 0.2. h = 0.7 and j = 0.4. 
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FIG. 14. The same as Fig. 9 but for E = 0.15. h = 0.7 and j = 0.2. 
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E,=(v,/300 km s-l)2 

FIG. 1.5. The same as Fig. 9 but 6 = 1, h = 0.7 and j = 0.2. 
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FIG. 16. The same as Fig. 9 but including the contribution of baryons to the galactic gravita- 
tional potential. c = 0.2 and h = 0.7 in all cases. The peaks are shown explicitly for j = 0.1. The 
dashed lines go through the tops of the peaks for the cases j 
line corresponds to j = 0. 

= 0.2 and j = 0.4 while the dotted 
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E,=(vn/300 km s-l)2 

FIG. Ii’. The same as Fig. 16 but for E = 0.4. 
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FIG. 18. The function F(U) defined in Eq. 5.18. 

:39 
- 


